
AN031201-0211
Abstract

This application note describes how to use the peripheral elements of Zilog’s Z16FMC
Series of Flash Motor Control MCUs, which include an ADC, a UART, an I2C, a PWM,
an SPI and 16-bit timers.

The source code files associated with this application note, AN0312-SC01, have been
tested with ZDS II version 4.11.1.

Table of Contents

Abstract . 1
Features . 3
Discussion . 4
ADC Operation . 4

ADC Hardware Architecture . 6
ADC Software Implementation . 7
ADC Initialization . 7
Testing ADC Operation . 10

Equipment Used . 10
System Configuration . 11
Setup . 11
Procedure . 12
Results . 13

UART Operation . 16
LIN-UART Register Description . 18

LIN-UART Control Register (UxCTL0, UxCTL1) . 18
LIN-UART Status Register 0 (UxSTAT0) . 20
LIN-UART Baud Rate High and Low Byte Registers (UxBRH, UxBRL) 21
LIN-UART Transmit Data Register (UxTXD) . 22
LIN-UART Receive Data Register (UxRXD) . 22

UART Software Implementation . 22
Setup . 24

I2C Operation . 25
I2C Hardware Architecture . 26
I2C Software Implementation . 26
Testing I2C Operation . 28

Note:
AN031201-0211
Application Note
Getting Started with ZNEO®-Based
MCUs
 Page 1 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
Equipment Used . 29
Setup . 29
Procedure . 29
Results . 29

Multi-Channel PWM Module Operation . 31
PWM Functions . 32
PWM Software Implementation . 33

FLASH_OPTION1 . 33
Init_PWM_GPIO . 33
Select_PWM_Alignment . 34
Select_PWM_Polarity . 34
Init_PWM_Registers . 35
Initial_PWM_Duty_Cycle . 36
Independent_Mode_PWM_Dutycycle . 36
Complementary_Mode_PWM_Dutycycle . 37
Results . 37

Timer Operation . 40
Timer Features . 40
Timer Software Implementation . 41
Timer Modes . 43

ONE SHOT Mode . 44
TRIGGERED ONE SHOT Mode . 44
CONTINUOUS Mode . 45
COUNTER Mode . 46
COMPARATOR COUNTER Mode . 47
PWM SINGLE OUTPUT Mode . 47
PWM DUAL OUTPUT Mode . 48
CAPTURE Mode . 49
CAPTURE RESTART Mode . 50
CAPTURE/COMPARE Mode . 50
COMPARE Mode . 51
GATED Mode . 51

ESPI Operation . 52
Overview of the SPI Protocol . 54
SPI Data Transfer . 54
SPI Hardware Architecture . 55
SPI Software Implementation . 56
Testing SPI Operation . 56

Equipment Used . 56
Setup . 57
Procedure . 57
Results . 57

Summary . 58
AN031201-0211 Page 2 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
References . 58
Appendix A. Schematics . 60
Appendix B. Flowcharts . 62

ADC Flowchart . 62
I2C Flowcharts . 63
SPI Flowcharts . 66

Customer Support . 68

Features

The Z16FMC Series Development Board is a development and prototyping board for the
Z16FMC Series MCU. The board allows you to evaluate the features of the Z16FMC
Series MCU and to develop an application before building your hardware.

The Z16FMC Series of Flash microcontrollers are based on Zilog’s advanced ZNEO 16-
bit CPU core. This Z16FMC Series sets a new standard for performance and efficiency
with a 24-bit address bus and a 16-bit data bus. The Z16FMC Series’ External Interface
allows seamless connection to external memory and peripherals. A 24-bit address bus and
selectable 8-bit or 16-bit data bus allows parallel access up to 16 MB.

The development board contains circuitry to support and present all of the key features of
the Z16FMC Series, including:

• 20 MHz ZNEO CPU Core

• Up to 128 KB internal Flash program memory with 16-bit access and in-circuit pro-
gramming capability

• Up to 4 KB internal RAM with 16-bit access

• An external interface that allows a seamless connection to external data memory and
peripherals with:

– 6 chip selects with programmable wait states

– 24-bit address bus which supports up to 16 MB

– Selectable 8-bit or 16-bit data bus widths

– Programmable Chip Select signal polarity

– ISA-compatible mode

• Up to 12 channels of 10-bit ADC

• Operational Amplifier

• Analog Comparator

• 4-channel DMA controller which supports internal or external DMA requests

• Two full-duplex 9-bit Universal Asynchronous Receivers/Transmitters (UARTs) with
support for Local Interconnect Network (LIN) and Infrared Data Association (IrDA)
functionality

• Internal Precision Oscillator (IPO)
AN031201-0211 Page 3 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
• I2C Master-Slave controller

• Enhanced Serial Peripheral Interface (ESPI) controller

• 12-bit Pulse Width Modulator (PWM) module with three complementary pairs or six
independent PWM outputs with deadband generation and fault trip input

• Three standard 16-bit timers with capture, compare and PWM capability

• Watchdog Timer (WDT) with internal RC oscillator

• Up to 76 I/O pins

• Up to 24 interrupts with programmable priority

• Single-pin on-chip debugger

• Power-On Reset (POR)

• Voltage Brownout Protection (VBO)

• 2.7 V to 3.6 V operating voltage with 5 V tolerant inputs

• 0°C to +70°C standard temperature, –40°C to +105°C extended temperature, and –
40°C to +125°C automotive operating ranges

For more information, refer to the Z16FMC Series Product Specification (PS0220), avail-
able for download at http://www.zilog.com.

Discussion

The Z16FMC Series devices feature a 12-channel successive-approximation analog-to-
digital converter (ADC). This ADC converts an analog input signal to a 10-bit binary
number. The features of the ADC include:

• 12 analog input sources multiplexed with GPIO ports

• Fast conversion time – less than 5 μs

• Programmable timing controls

• Interrupt on conversion complete

• Internal voltage reference generator

• Internal reference voltage available externally

• Ability to supply external reference voltage

• Ability to do simultaneous or independent conversions

ADC Operation

The architecture of an Z16FMC Series MCU consists of a 12-input multiplexer, sample-
and-hold amplifier and 10-bit successive approximation ADC. The ADC digitizes the sig-
nal on a selected channel and stores this digitized data in the ADC data registers. In an
AN031201-0211 Page 4 of 68

http://www.zilog.com
http://www.zilog.com/docs/zneo/PS0220.pdf

Getting Started with ZNEO®-Based MCUs
Application Note
environment with high electrical noise, an external RC filter must be added at the input
pins to reduce high frequency noise. See Figure 1.

The ADC converts the analog input, ANAx, to a 10-bit digital representation. The equa-
tion used for calculating the digital value is represented by:

ADC Output = (210 – 1) * (ANAx/VREF)

Assuming zero gain and offset errors, any voltage outside the ADC input limits of AVSS
and VREF returns all 0s or 1s, respectively.

A new conversion is initiated by either a software write to the ADC Control Register’s
START bit or by a PWM trigger. For this application note, the START bit is used for ini-
tiating ADC conversion.

Initiating a new conversion stops any conversion currently in progress and begins a new
conversion. To avoid disrupting a conversion already in progress, the START bit is read to
indicate ADC operation status, whether busy or available.

For purposes of this application, the Z16FMC Series Development Board, shown in Fig-
ure 2, is used to test the ADC. Potentiometer R10, circled in the figure, provides the ana-
log input voltage for ADC Channel 5 (ANA5).

Figure 1. ADC Block Diagram
AN031201-0211 Page 5 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
ADC Hardware Architecture
The input for the ADC is from the voltage divider circuit. It consists of potentiometer, a
series resistor and a capacitor for filtering. Varying the resistance of the potentiometer var-
ies the input voltage to the ADC. See Figure 3.

Figure 2. The Z16FMC Series Development Board
AN031201-0211 Page 6 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
ADC Software Implementation
The software implementation is illustrated in Appendix B. Flowcharts (see Figure 37 on
page 62). Flow starts with ADC, UART and clock initialization. After ADC is enabled, the
START0 bit flag of the ADC Control Register is monitored until it becomes logic 0, indi-
cating that conversion is completed. After conversion is completed, data from the ADC
Data Byte Register is displayed to the Hyperterminal via UART. A new conversion is
again initiated.

ADC Initialization
ADC initialization involves setting the port as analog input. Port B[7:0] and Port H[3:0]
can be set as analog input through their alternate function. Since ANA5 is used, Port B5 is
set as analog input through this code line:

PBAFL = PB_ANA5; //PB5 as analog input ANA5

Using that same line, other analog input on Port B can be selected. Table 1 shows the
value for the PBAFL to set the Port B pins as analog input. Take note that Port B has
ANA0 to ANA7 and Port H has ANA8 to ANA11. This means that setting Port H as ana-
log input is through PHAF. As an example, if ANA8 is used as analog input, setting Port
H0 as analog input is:

PHAF = PH_ANA8; //PH0 as analog input ANA8

Figure 3. Analog Input Circuit
AN031201-0211 Page 7 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
Table 2 shows the functions of each bit on the ADC Control Register (ADC0CTL). This
control register is used to initiates ADC conversion and provides ADC status information.

A START0 bit is used to monitor the ADC conversion status. If this bit is a logic 1, ADC
conversion is in progress. If this bit becomes a logic 0, conversion is completed. Aside
from monitoring ADC conversion status, this bit can also be used to start ADC conversion
by writing a logic 1 on it.

CVTRD0 bit is used to operate ADC normally by writing logic 0 on it. Setting this bit to
logic 1 means that ADC data from analog input ANA0 up to analog input defined on
ADC0MAX register is read one at a time.

REFEN bit is used to set the source of the voltage reference. If it is logic 0, external volt-
age reference is used and if it is logic 1, internal voltage reference is enabled.

ADC0EN bit is used to enable ADC for normal operation by setting it to logic 1. If logic 0
is written on it, ADC is disabled for low power operation.

ANAIN0 bits are used to select the analog input source.

To set the ADC, this line of code is used:

Table 1. Analog Input Sources

Port Analog Input Channel

PB_ANA0 ANA0

PB_ANA1 ANA1

PB_ANA2 ANA2

PB_ANA3 ANA3

PB_ANA4 ANA4

PB_ANA5 ANA5

PB_ANA6 ANA6

PB_ANA7 ANA7

PH_ANA8 ANA8

PH_ANA9 ANA9

PH_ANA10 ANA10

PH_ANA11 ANA11

Table 2. ADC Control Register

Bits 7 6 5 4 3 2 1 0

Field START0 CVTRD0 REFEN ADC0EN ANAIN0[3:0]

RESET 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

ADDR FF–E500H
AN031201-0211 Page 8 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
ADC0CTL = ADC_ENABLE_NORMAL | ANA5;

This means that analog input ANA5 is selected, the use of external voltage reference is
enabled, and ADC operates normally. In selecting the analog input, ANA0 to ANA11 can
be used in place of ANA5. To enable internal voltage reference, INT_REF should be
“ORed” like this:

ADC0CTL = ADC_ENABLE_NORMAL | ANA5 | INT_REF;

To start ADC conversion, or to set START0 to ADC0CTL:

ADC0CTL |= START0;

The variables ANA5, PB_ANA5 and I NT_REF are defined in main.h.

The Sample Settling Time register is used to set the length of time from the SAMPLE/
HOLD signal to the START signal, when conversion begins; see Figure 4. The number of
clock cycles required for settling varies from system to system depending on the system
clock period used. This register must contain the number of clocks required to meet a
0.5 μs minimum settling time.

Values for ADCSST register ranges from 0x00 up to 0x1F. To determine the value for
ADCSST, this condition must be satisfied:

0.5 μs ≤ ADCSST * (1 / system clock frequency)

Figure 4. ADC Timing Diagram

Note:
AN031201-0211 Page 9 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
For the internal clock frequency of 5,529,600Hz, a minimum value of 0x03 for ADCSST
can be used.

The sample time register is used to program the length of active time for the sample once a
conversion begins by setting the START bit in the ADC control register or initiated by the
PWM. The number of system clock cycles required for sample time varies from system to
system depending on the clock period used. This register must contain the number of sys-
tem clocks required to meet a 1 μs minimum sample time.

Values for ADCST register ranges from 0x00 up to 0x3F. To determine the value for the
ADCST, this condition must be satisfied.

1 μs ≤ ADCST * (1 / system clock frequency)

For the internal clock frequency of 5,529,600 Hz, a minimum value of 0x06 for ADCST
can be used.

The ADC Clock Prescale register is used to provide a divided system clock to the ADC.
When this register is programmed with 0H or NODIV (as defined in main.h), the system
clock is used for the ADC Clock.

ADCCP value divides the system clock frequency for ADC clock. The following are the
values for ADCCP:

• DIV2 to divide system clock by 2

• DIV4 to divide system clock by 4

• DIV8 to divide system clock by 8

• DIV16 to divide system clock by 16

In a typical configuration, ADCCP has DIV4 when the system clock frequency is 20MHz.
As example:

ADCCP = DIV4;

Testing ADC Operation
This section provides information about how to run the code and demonstrate this applica-
tion note.

Equipment Used

• Z16FMC Series Development Kit

• Digital voltmeter to measure the input analog voltage on ANA5

• Power supply to provide external reference voltage

• PC to run the code and to display the ADC values in Hyperterminal
AN031201-0211 Page 10 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
System Configuration

Configure Hyperterminal to reflect the settings shown in Figure 5.

Setup

Figure 6 illustrates the system setup to demonstrate the ADC peripheral. A potentiometer
is used as an analog input for ANA5, a built-in feature of the Z16FMC Series Develop-
ment Board. A digital voltmeter is used to measure the input voltage to ANA5. A PC run-
ning the Hyperterminal emulation program is used to display via the decimal and
hexadecimal ADC values via UART0. A power supply for external reference voltage is
connected to Pin 1 of the development board’s JP4 jumper.

Figure 5. Hyperterminal Display Port Settings
AN031201-0211 Page 11 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
Procedure

Observe the following brief instructions to test the operation of the ADC block of the
Z16FMC MCU.

1. Open the AN0312-SC01 project in ZDSII for ZNEO.

2. On the code, EXT_CLOCK and EXT_VREF are defined on main.c. Comment out
EXT_CLOCK if internal clock is intended to used. Also, if internal VREF is used,
comment out EXT_VREF.

3. Set up the Hyperterminal emulation program; refer to Figure 5 for the appropriate set-
tings.

4. Follow the hardware set up in Figure 6.

5. Compile and run the code.

6. Sample view on Hyperterminal display is illustrated on Figure 7.

Figure 6. ADC Hardware Setup
AN031201-0211 Page 12 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
Results

Figures 8 through 11 display the results of voltage input with respect to the following ideal
and measured ADC values.

• Internal VREF and Internal Clock

• Internal VREF and External Clock

• External VREF and Internal Clock

• External VREF and External Clock

Figure 7. Hyperterminal Display
AN031201-0211 Page 13 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
Figure 8. Internal ADC Reference Voltage and Internal Clock

Figure 9. Internal ADC Reference Voltage and External Clock

VIN

ADC Value

Ideal Measured

0 0 0

0.2 102 97

0.4 205 199

0.6 307 303

0.8 409 407

1 512 508

1.2 614 614

1.4 716 717

1.6 818 820

1.8 921 924

2 1023 1023

VIN

ADC Value

Ideal Measured

0 0 1

0.2 102 97

0.4 205 200

0.6 307 302

0.8 409 405

1 512 507

1.2 614 610

1.4 716 713

1.6 818 816

1.8 921 917

2 1023 1022

ADC using Internal Vref and IPO

0

200

400

600

800

1000

1200

0 0.5 1 1.5 2 2.5

Vin

A
D

C
 O

u
tp

ut
 V

al
ue

ideal

measured

ADC using Internal Vref and External Clock

0

200

400

600

800

1000

1200

0 0.5 1 1.5 2 2.5

Vin

A
D

C
 O

u
tp

ut
 V

a
lu

e

ideal

measured
AN031201-0211 Page 14 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
Figure 10. External ADC Reference Voltage and Internal Clock

Figure 11. External ADC Reference Voltage and External Clock

VIN

ADC Value

Ideal Measured

0 0 1

0.2 102 97

0.4 205 200

0.6 307 302

0.8 409 405

1 512 507

1.2 614 610

1.4 716 713

1.6 818 816

1.8 921 917

2 1023 1022

VIN

ADC Value

Ideal Measured

0 0 1

0.2 102 95

0.4 205 198

0.6 307 302

0.8 409 403

1 512 506

1.2 614 613

1.4 716 711

1.6 818 814

1.8 921 918

2 1023 1021

ADC using External Vref and IPO

0

200

400

600

800

1000

1200

0 0.5 1 1.5 2 2.5

Vin

A
D

C
 O

u
tp

ut
 V

a
lu

e

ideal

measured

ADC using External Vref and External Clock

0

200

400

600

800

1000

1200

0 0.5 1 1.5 2 2.5

Vin

A
D

C
 O

u
tp

u
t V

al
u

e

ideal

measured
AN031201-0211 Page 15 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
UART Operation

Z16FMC MCUs provide two LIN-UART peripherals that are full-duplex communication
channels capable of handling asynchronous data transfers. The LIN-UART includes the
following features:

• 8-bit asynchronous data transfer

• Selectable even- or odd-parity generation and checking

• Option of one or two stop bits

• Separate transmit and receive interrupts or DMA requests

• Separate transmit and receive enables

• Framing, parity, overrun, and break detection

• 16-bit Baud Rate Generators (BRG)

• Selectable MULTIPROCESSOR (9-bit) mode with three configurable interrupt
schemes

• Baud Rate Generator timer mode

• Driver enable output for external bus transceivers

• LIN protocol support for both MASTER and SLAVE modes:

– Break generation and detection

– Selectable slave autobaud

– Check Tx versus Rx data when sending

• Configurable digital noise filter on receive data line

The LIN-UART consists of three primary functional blocks - transmitter, receiver, and
BRG. The transmitter and the receiver function independently but use the same baud rate
and data format. Figure 12 illustrates the LIN-UART architecture.
AN031201-0211 Page 16 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
Figure 12. LIN-UART Block Diagram
AN031201-0211 Page 17 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
LIN-UART Register Description
The ZNEO UART registers are briefly discussed in this section.

LIN-UART Control Register (UxCTL0, UxCTL1)

The LIN-UART Control 0 & 1 registers configure the basic properties of the LIN-UART’s
transmit and receive operations.

Table 3. LIN-UART Control Register 0

Bits 7 6 5 4 3 2 1 0

Field TEN REN CTSE PEN PSEL SBRK STOP LBEN

RESET 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

ADDR FF–E202H, FF–E212H

Bit
Position Description (Continued)

7 Transmit Enable (TEN)
Enables or disables the transmitter. Transmit enable can also be used in conjunction with CTS
signal and CTSE bit.

6 Receive Enable (REN)
Enables or disables the receiver.

5 CTS Enable (CTSE)
Defines if CTS signal has no effect on the transmitter or if UART recognizes the CTS signal as
an enable control for the transmitter.

4 Parity Enable (PEN)
Enables or disables the parity bit.

3 Parity Select (PSEL)
If parity is enabled, this bit specifies if odd- or even-parity is used.

2 Send Break (SBRK)
Pauses or breaks data transmission.

1 Stop Bit Select (STOP)
Defines the number of stop bits (1 or 2 stop bits) the transmitter should sent.

0 Loop Back Enable (LBEN)
Determines if the transmitted data should be looped back to the receiver or not.
AN031201-0211 Page 18 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
Table 4. LIN-UART Control Register 1

Bits 7 6 5 4 3 2 1 0

Field MPMD(1) MPEN MPMD(0) MPST DEPOL BRGCTL RDAIRQ IREN

RESET 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

ADDR FF–E203H, FF–E213Hwith MSEL = 000b

Bit
Position Description (Continued)

7:5 Multiprocessor Mode (MPMD[1:0])
If multiprocessor mode (MPEN) is enabled, these bits selects the interrupt scheme to be used.

6 Multiprocessor Enable (MPEN)
Enables or disables the multiprocessor (9-bit) mode.

4 Multiprocessor Bit Transmit (MPBT)
If multiprocessor mode (MPEN) is enabled, this bit determines what data to send at the
multiprocessor bit location (9th bit) of the data stream.

3 Driver Enable Polarity (DEPOL)
Determines if DE signal is active low or active high.

2 Baud Rate Control (BRGCTL)
This bit causes different UART functionality depending on whether UART receiver is enabled
or disabled. Generally, this bit defines whether the BRG generates an interrupt or not.

1 Receive Data Interrupt Enable (RDAIRQ)
Determines whether the receiver generates an interrupt on (1) data receive and/or receiver
errors, or (2) receiver errors only.

0 Infrared Encoder/Decoder Enable (IREN)
Enables or disables infrared encoder/decoder.
AN031201-0211 Page 19 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
LIN-UART Status Register 0 (UxSTAT0)

The LIN-UART Status 0 Register identifies the current UART operating configuration
and status.

Table 5. LIN-UART Status Register 0

Bits 7 6 5 4 3 2 1 0

Field RDA PE OE FE BRKD TDRE TXE CTS

RESET 0 0 0 0 0 1 1 1

R/W R R R R R R R R

ADDR FF–E201H, FF–E211H

Bit
Position Description (Continued)

7 Receive Data Available (RDA)
Indicates if new data is received. Reading the UART Receive Data Register clears this bit.

6 Parity Error (PE)
Indicates that a parity error has occurred. Reading the UART Receive Data Register clears this
bit.

5 Overrun Error (OE)
Indicates that an overrun error has occurred. Reading the UART Receive Data Register clears
this bit.

4 Framing Error (FE)
Indicates that a framing error occurred (no stop bit following data reception was detected).
Reading the UART Receive Data Register clears this bit.

3 Break Detect (BRKD)
Indicates that a break occurred.

2 Transmit Data Register Empty (TDRE)
Indicates that the UART Transmit Data Register is empty and is ready for additional data.
Writing to the UART Transmit Data Register clears this bit.

1 Transmitter Empty (TXE)
Indicates that the Transmit Shift Register is empty and that character transmission is finished.

0 CTS Signal (CTS)
Reading this bit returns the level of the CTS signal.
AN031201-0211 Page 20 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
LIN-UART Baud Rate High and Low Byte Registers (UxBRH, UxBRL)

The LIN-UART Baud Rate High and Low Byte registers combine to create a 16-bit baud
rate divisor value, which sets the data transmission rate of the LIN-UART. The UART
must be disabled when updating the baud rate registers because high and low registers
must be written independently.

The baud rate divisor for a given UART data rate can be calculated using the following
equation:

The baud rate error relative to the appropriate baud rate is calculated using the following
equation:

Table 6. LIN-UART Baud Rate High Byte Register

Bits 7 6 5 4 3 2 1 0

Field COMP_ADDR

RESET 00H

R/W R/W

ADDR FF–E205H, FF–E215H

Table 7. LIN-UART Baud Rate Low Byte Register

Bits 7 6 5 4 3 2 1 0

Field BRL

RESET 1

R/W R/W

ADDR FF–E207H, FF–E217H
AN031201-0211 Page 21 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
LIN-UART Transmit Data Register (UxTXD)

Data bytes written to the LIN-UART Transmit Data register are shifted out on the TXD
pin. This register is write-only, and shares a register file address with the read-only LIN-
UART Receive Data register.

LIN-UART Receive Data Register (UxRXD)

Data bytes received through the RXD pin are stored in the LIN-UART Receive Data reg-
ister. This register is read-only, and shares a register file address with the write-only LIN-
UART Transmit Data register.

UART Software Implementation
The ZNEO CPU has 2 independent UART peripherals, UART0 (at Port A) and UART1
(at Port D), capable of handling standard serial interfaces. The source code associated with
this document initializes both UART0 and UART1 for serial communications at 8 data
bits, 1 stop bit, no parity, 9600bps (default), with the ZNEO running using the 5.5296MHz
internal clock source. It also comes with a selectable baud rate definition configured using
the 5.5296MHz clock and a definition to select whether to run the UART in polled or
interrupt mode.

///
#define INTERRUPT_MODE// uncomment this line to use
// UART in polled mode

/**

**
**DEFINES & MACROS
**

Table 8. LIN-UART Transmit Data Register

Bits 7 6 5 4 3 2 1 0

Field TxD

RESET X

R/W W

ADDR FF–E200H, FF–E210H

Table 9. LIN-UART Receive Data Register

Bits 7 6 5 4 3 2 1 0

Field RxD

RESET X

R/W R

ADDR FF–E200H, FF–E210H
AN031201-0211 Page 22 of 68

Getting Started with ZNEO®-Based MCUs
Application Note

**/
// using internal clock source 5.5296MHz
#define BAUD_300((UINT16)1152)
#define BAUD_600((UINT16)576)
#define BAUD_1200((UINT16)288)
#define BAUD_2400((UINT16)144)
#define BAUD_4800((UINT16)72)
#define BAUD_9600((UINT16)36)
#define BAUD_19200((UINT16)18)
#define BAUD_38400((UINT16)9)
#define BAUD_57600((UINT16)6)
#define BAUD_115200((UINT16)3)

#define BAUDRATEBAUD_9600 // change, as required
///

In the main program, the user is prompted to input a string then press enter when done. As
soon as the program detects a line feed (0x0A) in the user input, it will echo back the input
to the user. This process will continue to loop until the user decides to quit. The program is
designed to accept a maximum of 64 characters (MAX_CHARS) from the user. For polled
mode, this size is defined in main.c; while in interrupt mode, MAX_CHARS depends on
the buffer’s size, which is defined in rbuf.h.

When running in interrupt mode, the application uses a buffer defined in rbuf.c to store
incoming and outgoing messages. Note, however, that both UART0 and UART1 use the
same input and output buffers. This application is for demo purposes only and it does not
intend to use both UARTs at the same time. The user must create separate buffers for
UART0 and UART1, if attempting to use both UARTs at the same time. The relevant rou-
tines for interrupt mode are:

///
void UARTx_Init(void);// Initialize UART
void UARTx_StartTx(void);// Start UART transmission
///

The interrupt routines are declared as follows:

///
void interrupt UARTx_TxIsr(void) _At UARTx_TX
{
// if TXD buffer is not empty, do nothing
if(!(UxSTAT0 & 0x04))

return;

// If there is data to Tx, get Tx data from output buffer
if(RBUF_GetLengthOutBuffer() > 0)

UxTXD = RBUF_GetByteFromOutBuffer();
}

AN031201-0211 Page 23 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
void interrupt UARTx_RxIsr(void) _At UARTx_RX
{
UINT8 temp = UxRXD;
if((UxSTAT0 & 0x78) == 0x78)// ERROR occurred!!!

return; // read data to clear this bit
RBUF_AddByteToInBuffer(temp);// add Rx data to input buffer
}
///

When running in polled mode, the application directly uses the buffers declared in
main(), namely – strInput[MAX_CHARS] and outBuff[MAX_CHARS]. The
relevant routines for polled mode are:

///
void UARTx_Init(void);// Initialize UART

void UARTx_SendByte(UINT8 data);
void UARTx_SendString(UINT8 *data, UINT8 len);

UINT8 UARTx_ReceiveByte(void);
void UARTx_ReceiveString(UINT8 len, UINT8 *outData);
///

Setup

The source code associated with this application note uses the Z16FMC Series Develop-
ment Board connected to the Hyperterminal program via the PC’s serial (RS-232) port;
see Figure 13. The Hyperterminal settings should be 8-N-1 if using the default 9600 baud
rate called out in the source code.

Figure 13. Z16FMC Series Development Kit to PC Connection via Serial (RS-232) Port
AN031201-0211 Page 24 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
I2C Operation

Features of the ZNEO I2C controller include:

• Operates in Master/Slave or Slave Only modes

• Supports arbitration in a Multi-Master environment (Master/Slave mode)

• Supports data rates up to 400 Kbps

• 7-bit or 10-bit slave address recognition (interrupt only on address match)

• Optional general call address recognition

• Optional digital filter on receive SDA and SCL lines

• Optional interactive receive mode allows software interpretation of each received
address and/or data byte before acknowledging

• Unrestricted number of data bytes per transfer

• A Baud Rate Generator can be used as a general-purpose timer with an interrupt if the
I2C controller is disabled

A block diagram of the I2C Controller is shown in Figure 14.

Figure 14. I2C Controller Block Diagram
AN031201-0211 Page 25 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
I2C Hardware Architecture
The inter-integrated circuit (I2C) protocol is demonstrated by interfacing the Z16FMC
Series microcontroller with an I2C EEPROM (in this application, we employ an
AT24C128 from Atmel Corporation). The Z16FMC chip uses the I2C controller in Master
mode while the EEPROM acts as the slave. The software implementation for I2C commu-
nication is performed in polling and interrupt modes.

Figure 15 shows a block diagram of an I2C EEPROM device interfacing with a Z8
Encore! XP MCU. For more details about hardware connections, see Appendix A. Sche-
matics on page 60.

I2C Software Implementation
This reference design makes use of the Z16FMC MCU’s on-chip I2C controller. The soft-
ware presented with this application initializes the peripheral and enables communication
with the AT24C128 EEPROM chip via the I2C protocol.

The following operations were performed using either a polling or an interrupt-driven
method:

• Write a single byte to the EEPROM

• Read a single byte to the EEPROM

• Write a whole page to the EEPROM

• Read a whole page to the EEPROM

The software features two APIs for I2C communications (found in eeprom.c), namely:

• Write API

Figure 15. Product/Reference Design Block Diagram
AN031201-0211 Page 26 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
• Read API

Figure 16 demonstrates a Master Write Transaction with a 7-bit address. Observe the fol-
lowing steps for a Master transmit operation to a 7-bit addressed I2C EEPROM slave
device.

1. Initialize the I2C controller.

2. Check if the I2C line is busy.

3. Issue a start condition.

4. Send a slave address (R/W bit = 0) to the I2C device.

5. Send the Most Significant Byte of the address to be written to the EEPROM (this
address is two bytes long).

6. Send the Least Significant Byte of the address to be written to the EEPROM (this
address is two bytes long).

7. Send the data to be saved. For page writes, repeat this process if more bytes remain to
be sent.

8. Issue a stop condition.

Figure 17 demonstrates a Master Read Transaction with a 7-bit sequential address.
Observe the following steps for a Master read operation to a 7-bit addressed I2C EEPROM
slave device.

1. Initialize the I2C controller.

2. Check if the I2C line is busy.

3. Issue a start condition.

4. Send a slave address (R/W bit = 0) to the I2C device.

5. Send the Most Significant Byte of the address to be written to the EEPROM (this
address is two bytes long).

6. Send the Least Significant Byte of the address to be written to the EEPROM (this
address is two bytes long).

7. Reissue a start condition.

8. Send a slave address (R/W bit = 1) to the I2C device.

9. Read the data sent by the slave device. The Master device should acknowledge (ACK)
for all data that is read. However, if the data being read is the final byte, the master
device issues a Not Acknowledge (NACK) instead.

Figure 16. Master Write Transaction with a 7-Bit Address
AN031201-0211 Page 27 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
10. Issue a stop condition.

When data is sent by the Master device, the slave device responds by an Acknowledge-
ment/No Acknowledgement.

For page writes, a maximum of 32bytes can be written to the AT24C128.

Testing I2C Operation
This section explains the test procedure to verify the APIs developed to demonstrate the
I2C capabilities of the Z16FMC series microcontrollers.

There are two modes to communicate with the I2C EEPROM slave device, namely:

• Polling method

• Interrupt-driven method

The following definition in main.h is used to choose between the above two methods:

#define I2C_POLLING_METHOD

Only one method can be used at a time. (Change the #define to #undef if testing for
the interrupt-driven method.)

The following definitions and buffers are used to test the read/write capabilities:

#define TEST_BYTE1 0xAA
#define TEST_BYTE2 ~TEST_BYTE1
#define TEST_ADDRESS 0xF000
#define TEST_PAGE_NO 0x10

unsigned char message1[BYTES_PER_PAGE] =
{ "Testing I2C Protocol on ZNEO MCU" };
unsigned char message2[BYTES_PER_PAGE] =
{ "ZNEO I2C on-chip peripheral test" };
unsigned char message3[BYTES_PER_PAGE] =
{ "~~ZNEO I2C polling method test~~" };
unsigned char message4[BYTES_PER_PAGE] =
{ "~ZNEO I2C interrupt driven test~" };
unsigned char compare_buffer[BYTES_PER_PAGE];

Figure 17. Master Read Transaction with a 7-Bit Address

Notes:
AN031201-0211 Page 28 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
These can be found in main.h and main.c, respectively.

The following definitions in I2cRegisterDefinesF2811.h can be used to change
the I2C parameters:

#define FREQUENCY 20000000
#define BAUD 100000
#define BRG FREQUENCY / (4*BAUD)

Equipment Used

The following equipment is used for the setup.

• Z16FMC Series Development Kit

• Two 1 K resistors

• AT24C128

• Connecting wires

• PC with installed ZDS II ZNEO 4.11.1 IDE and a serial port

Setup

For the setup, please refer to Figure 6 on page 12 and Appendix A. Schematics on page 60.

Procedure

Observe the following steps to test I2C Bus Master operation.

1. Connect the external I2C EEPROM (AT24C128) device to the Z16FMC Series MCU
Development Board, as displayed on Appendix A. Schematics on page 60

2. Download the project file and open it in the ZDS II IDE (AN0312-SC01.zip).

3. Compile and build the project. Download the hex code to the Z16FMC Series Devel-
opment Board.

4. Create a new Hyperterminal connection with the following properties: 57600 bps, 8
data bits, no parity with 1 stop bit and no flow control

5. Execute the program, a message prompt can be seen on the Hyperterminal on the sta-
tus of the I2C read and writes

6. Stop the program and change the test defines then repeat steps 3 to 5.

Results

Data was successfully written to and read from the EEPROM device in the following
modes:

• Polling method

• Interrupt-driven method
AN031201-0211 Page 29 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
The operations were performed in different baud rates. The waveforms for the Read and
Write operations were captured using a logic analyzer and displayed in Figures 18 and 19;
sample Hyperterminal output is shown in Figure 20.

Figure 18. Master Write Transaction Waveform

Figure 19. Master Read Transaction Waveform

Figure 20. Hyperterminal Output
AN031201-0211 Page 30 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
Multi-Channel PWM Module Operation

The Z16FMC MCUs feature a flexible PWM module with three complementary pairs or
six independent PWM outputs supporting deadband operation and fault protection trip
input. These features provide multiphase control capability for a variety of motor types
and ensure safe operation of the motor by providing immediate shutdown of the PWM
pins during Fault condition.

The Z16FMC Series includes a Multi-Channel PWM optimized for motor control applica-
tions. The PWM includes the following features:

• Six independent PWM outputs or three complementary PWM output pairs.

• Programmable deadband insertion for complementary output pairs.

• Edge-aligned or center-aligned PWM signal generation.

• PWM off-state is an option bit programmable.

• PWM outputs driven to off-state on System Reset.

• Asynchronous disabling of PWM outputs on system fault. Outputs are forced to off-
state.

• Fault inputs generate pulse-by-pulse or hard shutdown.

• 12-bit reload counter with 1, 2, 4, or 8 programmable clock prescaler.

• High current source and sink on all PWM outputs.

• PWM pairs used as general purpose inputs when outputs are disabled.

• ADC synchronized with PWM period.

• Synchronization for current-sense sample and hold.

• Narrow pulse suppression with programmable threshold.

The AN0312-SC01.zip file associated with this application note demonstrates the usage of
the Multichannel Timer feature. It initializes the Multichannel Timer to demonstrate three
Complimentary PWM outputs & six Independent PWM outputs. See a block diagram of
the PWM in Figure 21.

The AN0312-SC01 source code has been tested with ZDS II – ZNEO version 4.11.1.Note:
AN031201-0211 Page 31 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
PWM Functions
Table 10 describes each of the seven PWM functions.

Figure 21. PWM Block Diagram

Table 10. Pulse-Width Modulator Functions

Function Description

Init_PWM_GPIO This function initializes the GPIO pins required for the multichannel timer
operation.

Select_PWM_Alignment This function selects the PWM alignment. Alignment passed can either
be EDGE_ALIGN or CENTER_ALIGN.

Select_PWM_Polarity This function selects the PWM output polarity. Polarity passes can either
be NON_INVERT or INVERT.

Init_PWM_Registers This function initializes all the Multichannel Timer PWM registers.

Initial_PWM_Duty_Cycle This function initializes the PWM duty cycle registers with a start duty
cycle value of 20% respectively.
AN031201-0211 Page 32 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
PWM Software Implementation
The Flash_Option1 Register must be configured when implementing a Multi-Channel
PWM Timer. See Table 11.

FLASH_OPTION1

FLASH_OPTION1 = 0xFD //for PWM Independent Mode
FLASH_OPTION1 = 0xFC //for PWM Complementary Mode

Init_PWM_GPIO

Enable alternate functions for the PWM port. See Tables 12 and 13.

PCAFH |= 0xC0; // PC6,PC7 are 1 for Alternate Function 2 High register

Independent_Mode_PWM_
Dutycycle

This function changes the duty cycle of the Pulse Width Modulator.

Complementary_Mode_PWM_
Dutycycle

This function changes the duty cycle of the Pulse Width Modulator.

Table 11. Option Bits at Program Memory Address 0001H

Bits 7 6 5 4 3 2 1 0

Field Reserved MCEN PWNHI PWMLO

RESET U U U U U U U U

R/W R/W R/W R/W R/W R/W R/W R/W R/W

ADDR Program Memory 0001H

Note: U = Unchanged by Reset. R/W - Read/Write.

Bit
Position Description

7:3 Reserved.

2 Motor Control Enable (MCEN)
0 = Motor control pins are enabled on reset.
1 = Normal pin operation.

1 High side off initial value (PWMHI)
0 = The high side off value is equal to zero.
1 = The high side off value is equal to one.

0 Low side off initial value (PWMLO)
0 = The low side off value is equal to zero.
1 = The low side off value is equal to one.

Table 10. Pulse-Width Modulator Functions (Continued)

Function Description
AN031201-0211 Page 33 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
PCAFL &= 0x3F; // PC6,PC7 are 0 for Alternate Function 2 Low register
PDAFH &= 0x78; // PD7,PD2,PD1,PD0 are 0 for Alternate Function 1 high
PDAFL |= 0x87; // PD7,PD2,PD1,PD0 are 1 for Alternate Function 1 low

Select_PWM_Alignment

This function selects the PWM alignment. The alignment can be either EDGE_ALIGN or
CENTER_ALIGN.

PWMCTL0 &= ~(0x20); // Enable the Edge Aligned mode
PWMCTL0 |= 0x20; // Enable the Center Aligned mode

Select_PWM_Polarity

This function selects the PWM output polarity. Polarity passes can be either
NON_INVERT or INVERT.

PWMCTL1 &= 0xE3; // POL45 = POL23 = POL10 = 0
PWMCTL1 |= 0x1C; // POL45 = POL23 = POL10 = 1

Table 12. Port A–K Alternate Function High Registers (PxAFH)

Bits 7 6 5 4 3 2 1 0

Field AFH[7] AFH[6] AFH[5] AFH[4] AFH[3] AFH[2] AFH[1] AFH[0]

RESET 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

ADDR FF_E104, FF_E124, FF_E134, FF_E174

Table 13. Port A–K Alternate Function Low Registers (PxAFL)

Bits 7 6 5 4 3 2 1 0

Field AFH[7] AFH[6] AFH[5] AFH[4] AFH[3] AFH[2] AFH[1] AFH[0]

RESET 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

ADDR FF_E105, FF_E115, FF_E125, FF_E135, FF_E155, FF_E165, FF_E175, FF_E195

Table 14. PWM Control 0 Register (PWMCTL0)

Bits 7 6 5 4 3 2 1 0

Field PWMOFF OUTCTL ALIGN Reserved ADCTRIG Reserved READY PWMEN

RESET 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

ADDR FF_E380H
AN031201-0211 Page 34 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
Init_PWM_Registers

This function initializes all the Multichannel Timer PWM registers.

void Init_PWM_Registers(unsigned char deadband,
unsigned char min_pulse_filter);

Parameters

deadband // This determines the number of system clock cycles
// inserted as dead time in complimentary mode of
// operation.

min_pulse_filter // The minimum pulse width, either high or low, that can be
// generated by a PWM module.

Make sure that the value of the Pulse Filter passed as an argument is a nonzero value; oth-
erwise the PWM output will be distorted.

PWMDB = deadband;
// Deadband is necessary in complementary mode of operation.
// The minimum deadband value is 1.

PWMMPF = min_pulse_filter;
// Pulse Filter register sets the minimum allowed output pulse

width // in PWM clock cycles. This register can only be written when PWEN // is
cleared.
PWMOUT = 0x00;

// PWM Output Control Register enables modulator control of the
// 6 PWM output signals.

PWMFM = 0x27;
// PWM Fault Mask Register enables individual fault sources.
// DBGMSK->0,F1MASK->1,Comparator Fault is disabled
// FAULT0->disabled.

PWMFCTL = 0x44;
// PWM Fault Control register determines,
// how the PWM recovers from a fault condition.
// DBGRST->1, CMP0RST->1.

Table 15. PWM Control 1 Register (PWMCTL1)

Bits 7 6 5 4 3 2 1 0

Field RLFREQ[1:0] INDEN POL45 POL23 POL10 PRES[1:0]

RESET 00 0 0 0 0 00

R/W R/W R/W R/W R/W R/W R/W

ADDR FF_E381H

Note:
AN031201-0211 Page 35 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
PWMFSTAT = 0xFF;
// PWM fault status register provides status of fault inputs
// and timer reload.
// The fault flags indicate which fault source is active.

PWMHL = 0x0000;
// PWM counter initial value.

PWMR = s_PWMReloadValue;
// PWM counter reload value.

Initial_PWM_Duty_Cycle

This function initializes the PWM duty cycle registers with a start duty cycle value of
20%. If the mode is Independent, load the remaining PWM Low duty cycle registers.

initial_duty_cycle = (20 * s_PWMReloadValue) / 100;
s_PWMReloadValue = PWM_RELOAD_VALUE;
#define PWM_RELOAD_VALUE SYS_CLK_FREQ/(PWM_FREQUENCY*PWM_PRESCALAR)

// The initial values loaded into the PWM High duty cycle registers are
// applicable to both the Independent or Complementary mode of operations.

PWMH0D = initial_duty_cycle;// PWM High 0 duty cycle value.
PWMH1D = initial_duty_cycle; // PWM High 1 duty cycle value.
PWMH2D = initial_duty_cycle;// PWM High 2 duty cycle value.

// If mode is Independent, load the remaining PWM Low duty cycle registers.
// PWM Low side registers are loaded with initial duty cycle

PWML0D = initial_duty_cycle;// PWM Low 0 duty cycle value.
PWML1D = initial_duty_cycle;// PWM Low 1 duty cycle value.
PWML2D = initial_duty_cycle;// PWM Low 2 duty cycle value.

PWMCTL1 |= 0x20; // INDEN bit is made 1 for INDEPENDENT mode
PWMCTL1 &= 0xDF; // INDEN bit is made 0 for COMPLEMENTARY mode
PWMCTL0 |= 0x83; // Enable PWM by enabling the PWEM bit.

// Ready bit->1 and PWMOFF->1.

Independent_Mode_PWM_Dutycycle

This function changes the duty cycle of the Pulse Width Modulator in INDEPENDENT
mode and requires six parameters because all six PWM outputs will exhibit six indepen-
dent duty cycles.

Pass the required value, in percentage terms, to obtain the required PWM output. For
example, passing 10 will result in a 10% duty cycle.

Parameters

pwmh0_ind_dutycycle //This indicates duty cycle in percentage for PWMH0D.
pwml0_ind_dutycycle //This indicates duty cycle in percentage for PWML0D.

Note:
AN031201-0211 Page 36 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
pwmh1_ind_dutycycle //This indicates duty cycle in percentage for PWMH1D.
pwml1_ind_dutycycle //This indicates duty cycle in percentage for PWML1D.
pwmh2_ind_dutycycle //This indicates duty cycle in percentage for PWMH2D.
pwml2_ind_dutycycle //This indicates duty cycle in percentage for PWML2D.

Complementary_Mode_PWM_Dutycycle

This function changes the duty cycle of the Pulse Width Modulator in COMPLEMEN-
TARY mode. This duty cycle requires only three parameters because the other three PWM
outputs are the complementary pairs of the High-side PWMs.

Pass the required value, in percentage terms, to obtain the required PWM output. For
example, passing a value of 10 will result in a 10% duty cycle. The complementary PWM
output will exhibit a 90% PWM duty cycle.

Parameters

pwmh0_comp_dutycycle //This indicates duty cycle in percentage for PWMH0DL.
pwmh1_comp_dutycycle //This indicates duty cycle in percentage for PWMH1DL.
pwmh2_comp_dutycycle //This indicates duty cycle in percentage for PWMH2DL.

Macro Definitions

#define PWM_PRESCALAR 4

// MACRO to change the Prescaler of the Pulse Width Modulator for Edge &
// Center Aligned modes..

#define PWM_FREQUENCY 20000

// MACRO to change the PWM output frequency..

#define COMPLEMENTARY 0
#define INDEPENDENT 1
#define MODE INDEPENDENT

// MACRO selects the mode of operation of the PWM
#define PWM_RELOAD_VALUE SYS_CLK_FREQ/(PWM_FREQUENCY * PWM_PRESCALAR)
#define SET_PWM_PRESCALAR0x02

Results

Figures 22 and 23 show sample output from testing the PWM duty cycles in INDEPEN-
DENT and COMPLEMENTARY modes, respectively.

Note:
AN031201-0211 Page 37 of 68

../../../AppData/Roaming/Microsoft/Program Files/ZiLOG/Applications_Library/ZNEO Contest Kit Sample Code Library 1.0.1/Peripheral_Sample_Code/Documentation/multichannel__timer_8h.html#c7d955e1875ae45f9d71d10ef6cfa5f9#c7d955e1875ae45f9d71d10ef6cfa5f9

Getting Started with ZNEO®-Based MCUs
Application Note
Figure 22. Sample Output Using Six PWMs in Independent Mode

Figure 23. Sample Output Using Three PWMs in Complementary Mode
AN031201-0211 Page 38 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
Figure 24. Edge-Aligned PWM Output
AN031201-0211 Page 39 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
Timer Operation

The Z16FMC Series MCUs contain three 16-bit reloadable timers used for timing, event
counting or generation of pulse-width modulated (PWM) signals.

Timer Features
The timers include the following features:

• 16-bit reload counter

• Programmable prescaler with values ranging from 1 to 128

• PWM output generation (single or differential)

• Capture and compare capability

• An external input pin for event counting, clock gating or signal capture

• Complementary timer output pins

• A timer interrupt

A block diagram of the timer functions is shown in Figure 26.

Figure 25. Center-Aligned PWM Output
AN031201-0211 Page 40 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
Timer Software Implementation
The general-purpose timer is a 16-bit upcounter. Under normal operation, the timer is ini-
tialized to 0001H. When the timer is enabled, it counts up to the value contained in the
reload high and low byte registers, then resets to 0001H.

The counter either halts or continues depending on the mode. Minimum time-out delay (1
system clock) is set by loading the value 0001H into the Timer Reload High and Low
byte registers and setting the prescale value to 1. Maximum time-out delay (216 * 27 sys-
tem clocks) is set by loading the value 0001H into the Timer

In this demonstration, we reload the High and Low Byte Registers and set the prescale
value to 128. When the timer reaches FFFFH, the timer rolls over to 0000H. If the reload
register is set to a value less than the current counter value, the counter continues counting
until it reaches FFFFH, then resets to 0000H. The timer next continues to count until it
reaches the reload value and it resets to 0001H.

The preprocessor directives used to enable or disable the timer, to switch the timer
between different operating modes, and to change the prescaler are as follows:

#define RELOAD (0x1389)// 0x1389 for 1msec timer @ 20MHz
#define PRESCALE (PRESCALAR_4)
#define STARTCOUNT(0x0001)
#define COUNTER (0x0005)// timer counter value

// Different Operating modes of the TIMER
#define ENABLE_TIMER(0x80)

Figure 26. Timer Block Diagram
AN031201-0211 Page 41 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
#define DISABLE_TIMER(0x7F)
// Configure in Timer 0-2 Control 1 Register (TxCTL1)
// TxCTL1 = TMODE [2-0]
#define ONE_SHOT_MODE (0x00)
#define CONTINUOUS_MODE (0x01)
#define COUNTER_MODE (0x02)
#define PWM_SINGLE_MODE (0x03)
#define CAPTURE_MODE (0x04)
#define COMPARE_MODE (0x05)
#define GATED_MODE (0x06)
#define CAPTURE_COMPARE_MODE (0x07)
// Configure in Timer 0-2 Control 1 Register (TxCTL1)
// and in Timer 0-2 Control 0 Register (TxCTL0)
// TxCTL1 [2-0] = TMODE [2-0]
// TxCTL0 [7] = TMODE [3]
#define PWM_DUAL_MODE (0x08)
#define CAPTURE_RESTART_MODE(0x09)
#define COMPARATOR_COUNTER_MODE(0x0A)
#define TRIGGERED_ONE_SHOT_MODE(0x0B)

// Prescaler Values
#define PRESCALAR_1 (0x00) // Divide by 1
#define PRESCALAR_2 (0x08) // Divide by 2
#define PRESCALAR_4 (0x10) // Divide by 4
#define PRESCALAR_8 (0x18) // Divide by 8
#define PRESCALAR_16 (0x20) // Divide by 16
#define PRESCALAR_32 (0x28) // Divide by 32
#define PRESCALAR_64 (0x30) // Divide by 64
#define PRESCALAR_128 (0x38) // Divide by 128

// Directives for various Timer Registers
#define PWM_HIGH (0x00)
#define PWM_LOW (0x04)

#define POLARITY_HIGH (0x40)
#define POLARITY_LOW (0x00)

// Directives for Timer Interrupt Configurations
#define TICONFIG_RELOAD_COMPARE_INPUT(0x00)
#define TICONFIG_CAPTURE_DEASSERT(0x40)
#define TICONFIG_RELOAD_COMPARE(0x60)

void Enable_Timer2_OutputPin (void)
{

PCAFH &= ~0x80; // select port alternate function 1
PCAFL |= 0x80;

}

void Enable_Timer2_InputPin (void)
{

AN031201-0211 Page 42 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
PCAFH &= ~0x40; // select port alternate function 1
PCAFL |= 0x40;

}

// To change the interrupt priority of the timer, use the routines illustrated
below:
void TMR2_Priority_Low (void)
{

IRQ0ENH &= ~0x80;
IRQ0ENL |= 0x80;
IRQ0SET &= ~0x80; // reset interrupt request

}

void TMR2_Priority_Nominal (void)
{

IRQ0ENH |= 0x80;
IRQ0ENL &= ~0x80;
IRQ0SET &= ~0x80; // reset interrupt request

}

void TMR2_Priority_High (void)
{

IRQ0ENH |= 0x80;
IRQ0ENL |= 0x80;
IRQ0SET &= ~0x80; // reset interrupt request

}

Ensure that changing the Timer0 priority does not change the priorities of other interrupt
resources.

Timer Modes
The Z16FMC Series MCU can operate in a n umber of different timing modes depending
upon application requirements. These twelve modes, listed below, are each described in
this section where indicated.

• ONE SHOT Mode on page 44

• TRIGGERED ONE SHOT Mode on page 44

• CONTINUOUS Mode on page 45

• COUNTER Mode on page 46

• COMPARATOR COUNTER Mode on page 47

• PWM SINGLE OUTPUT Mode on page 47

• PWM DUAL OUTPUT Mode on page 48

• CAPTURE Mode on page 49

Note:
AN031201-0211 Page 43 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
• CAPTURE RESTART Mode on page 50

• CAPTURE/COMPARE Mode on page 50

• COMPARE Mode on page 51

• GATED Mode on page 51

ONE SHOT Mode

In ONE-SHOT mode, the timer counts up to the 16-bit reload value stored in the Timer
Reload High and Low Byte registers. The timer input is the system clock. When the timer
reaches the reload value, it generates an interrupt and the count value in the Timer High
and Low Byte registers is reset to 0001H. The timer is automatically disabled and stops
counting.

The basic equation to satisfy the time-out period in ONE SHOT mode is shown below.

For example, the reload value for a time-out period of 1 msec is calculated as follows:

Reload value = ((1 msec * system clock frequency) / prescaler) + start value

Reload value = ((0.001 * 20000000) / 4) + 1 = 0x1389

The Timer0 Reload High Register (T0RH) must be loaded with a value of 13h and the
Timer0 Reload Low Register (T0RL) must be loaded with a value of 89h.

The code listed below illustrates how to configure the timer in ONE-SHOT mode.

T2CTL1 = ONE_SHOT_MODE | PRESCALE;// Disable timer, ONE-SHOT mode,
// prescale = 4

T2CTL0 = 0x00;
T2H = (STARTCOUNT >> 8); // Set starting count value = 0001h
T2L = (STARTCOUNT & 0x00FF);
T2RH = (RELOAD >> 8); // Set reload value = 1381h (1msec)
T2RL = (RELOAD & 0x00FF);
TMR2_Priority_Nominal (); // timer interrupt priority = nominal
Enable_Timer2_OutputPin (); // Configure Port C for alternate
// function operation
T2CTL1 |= ENABLE_TIMER; // Enable timer

TRIGGERED ONE SHOT Mode

In TRIGGERED ONE-SHOT mode, the timer is non-active until a trigger is received. The
timer trigger is taken from the timer input pin. The TPOL bit in the Timer Control 1 Reg-
ister selects whether the trigger occurs on the rising edge or the falling edge of the timer
input signal.
AN031201-0211 Page 44 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
Following the trigger event, the timer counts system clocks up to the 16-bit reload value
stored in the Timer Reload High and Low Byte registers.

After reaching the reload value, the timer outputs a pulse on the timer output pin, gener-
ates an interrupt, and resets the count value in the Timer High and Low Byte registers to
0001H. The duration of the output pulse is a single system clock. The TPOL bit also sets
the polarity of the output pulse.

The timer now idles until the next trigger event. Trigger events, which occur while the
timer is responding to a previous trigger, are ignored.

The timer period is calculated by the following equation, in which the start value = 1):

For example, the reload value for a time-out period of 1 msec is calculated as follows:

Reload value = ((1 msec * system clock frequency) / prescaler) + start value

Reload value = ((0.001 * 20000000) / 4) + 1 = 0x1389

The Timer0 Reload High Register (T0RH) must be loaded with a value of 13h and the
Timer0 Reload Low Register (T0RL) must be loaded with a value of 89h.

The code listed below indicates how to configure the timer in TRIGGERED ONE-SHOT
mode:

T2CTL1 = (TRIGGERED_ONE_SHOT_MODE & 0x07) | PRESCALE;
T2CTL0 = (TRIGGERED_ONE_SHOT_MODE << 4) & 0x80;// Disable timer,
// PWM Dual Output mode
T2H = (STARTCOUNT >> 8); // Set starting count value = 0001h
T2L = (STARTCOUNT & 0x00FF);
T2RH = (COUNTER >> 8); // Set reload value = 0005h (5 counts)
T2RL = (COUNTER & 0x00FF);
T2CTL0 = TICONFIG_RELOAD_COMPARE;// Set Timer to interrupt on

// reload/compare events only
TMR2_Priority_High(); // Enable timer interrupt priority
Enable_Timer2_OutputPin (); // Configure Port C for alternate

// function operation
Enable_Timer2_InputPin (); // Enable timer input pin
T0CTL1 |= ENABLE_TIMER; // Enable timer

CONTINUOUS Mode

In CONTINUOUS mode, the timer counts up to the 16-bit reload value stored in the
Timer Reload High and Low Byte registers. After reaching the reload value, the timer gen-
erates an interrupt, the count value in the Timer High and Low Byte registers is reset to
0001H, and counting resumes. If the timer output alternate function is enabled, the timer
output pin changes state (from Low to High or from High to Low) after timer reload.
AN031201-0211 Page 45 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
The timer period is determined by the following equation:

If an initial starting value other than 0001H is loaded into the Timer High and Low Byte
registers, use the ONE SHOT Mode equation to determine the first time-out period.

For example, the reload value for a time-out period of 1 msec is calculated as follows:

Reload value = ((1 msec * system clock frequency) / prescaler) + start value

Reload value = ((0.001 * 20000000) / 4) + 1 = 0x1389

The Timer0 Reload High Register (T0RH) must be loaded with a value of 13h and the
Timer0 Reload Low Register (T0RL) must be loaded with a value of 89h.

The code listed below indicates how to configure the timer in CONTINUOUS mode:

T2CTL1 = CONTINUOUS_MODE | PRESCALE;// Disable timer,
// ONE-SHOT mode, prescale = 4

T2CTL0 = 0x00;
T2H = (STARTCOUNT >> 8); // Set starting count value = 0001h
T2L = (STARTCOUNT & 0x00FF);
T2RH = (RELOAD >> 8); // Set reload value = 1381h (1msec)
T2RL = (RELOAD & 0x00FF);
TMR2_Priority_High (); // timer interrupt priority = nominal
Enable_Timer2_OutputPin (); // Configure Port C for alternate

// function operation
T2CTL1 |= ENABLE_TIMER; // Enable timer

COUNTER Mode

In COUNTER mode, the timer counts input transitions from a GPIO port pin. The timer
input is taken from the associated GPIO port pin. The TPOL bit in the Timer Control 1
Register selects whether the count occurs on the rising edge or the falling edge of the timer
input signal. In COUNTER mode, the prescaler is disabled.

The code below indicates how to configure the timer in COUNTER mode:

T2CTL1 = COUNTER_MODE; // Disable timer, COUNTER mode
T2H = (STARTCOUNT >> 8); // Set starting count value = 0001h
T2L = (STARTCOUNT & 0x00FF);
T2RH = (COUNTER >> 8); // Set reload value = 0005h (5 counts)
T2RL = (COUNTER & 0x00FF);
T2CTL0 = TICONFIG_RELOAD_COMPARE;// Set Timer to interrupt on

// reload/compare events only
TMR2_Priority_High(); // Enable timer interrupt priority
Enable_Timer2_OutputPin (); // Configure Port C for alternate

// function operation
Enable_Timer2_InputPin (); // Enable timer input pin
AN031201-0211 Page 46 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
T0CTL1 |= ENABLE_TIMER; // Enable timer

COMPARATOR COUNTER Mode

In COMPARATOR COUNTER mode, the timer counts output transitions from an analog
comparator output. The timer takes its input from the output of the comparator. The TPOL
bit in the Timer Control 1 Register selects whether the count occurs on the rising edge or
the falling edge of the comparator output signal. The prescaler is disabled in COMPARA-
TOR COUNTER mode.

The code below indicates how to configure the timer in COMPARATOR COUNTER
mode:

CMPOPC |= 0x01; // Enable Comparator
PCAFH |= 0x01; // Initialize Comparator0
PCAFL |= 0x01;

T2CTL0 = (COMPARATOR_COUNTER_MODE << 4) & 0x80;
T2CTL1 = COMPARATOR_COUNTER_MODE & 0x07;// Disable timer,

// COMPARATOR COUNTER mode
T2H = (STARTCOUNT >> 8); // Set starting count value = 0001h
T2L = (STARTCOUNT & 0x00FF);
T2RH = (COUNTER >> 8); // Set reload value = 0005h (5 counts)
T2RL = (COUNTER & 0x00FF);
TMR2_Priority_High(); // Enable timer interrupt priority
Enable_Timer2_OutputPin; // Configure Port C for alternate

// function operation
T2CTL1 |= ENABLE_TIMER; // Enable timer

PWM SINGLE OUTPUT Mode

In PWM SINGLE OUTPUT mode, the timer outputs a PWM output signal through a
GPIO port pin. The timer first counts up to the 16-bit PWM match value stored in the
Timer PWM High and Low Byte registers. When the timer count value matches the PWM
value, the timer output toggles. The timer continues counting until it reaches the reload
value stored in the Timer Reload High and Low Byte registers. When it reaches the reload
value, the timer generates an interrupt. The count value in the Timer High and Low Byte
registers is reset to 0001H, and counting resumes.

The timer output signal begins with a value = TPOL and then transits to TPOL, when the
timer value matches the PWM value. The timer output signal returns to TPOL after the
timer reaches the reload value and is reset to 0001H.

The PWM period is determined by the following equation:
AN031201-0211 Page 47 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
If an initial starting value other than 0001H is loaded into the Timer High and Low Byte
registers, use the ONE SHOT Mode equation to determine the first PWM time-out period.

If TPOL is set to 0, the ratio of the PWM output High time to the total period is deter-
mined by the following equation:

If TPOL is set to 1, the ratio of the PWM output High time to the total period is deter-
mined by:

The code below indicates how to configure the timer in PWM SINGLE OUTPUT mode:.

T2CTL1 = PWM_SINGLE_MODE | PRESCALE;// Disable timer, PWM mode
T2H = (STARTCOUNT >> 8); // Set starting count value = 0001h
T2L = (STARTCOUNT & 0x00FF);
T2RH = (RELOAD >> 8); // Set reload value = 1381h (1msec)
T2RL = (RELOAD & 0x00FF);
T2PWMH = (RELOAD / 2) >> 8; // Set PWM value (50% duty cycle)
T2PWML = (RELOAD / 2) & 0x00FF;
TMR2_Priority_High (); // Enable timer interrupt priority
Enable_Timer2_OutputPin (); // Configure Port C for alternate

// function operation
T0CTL1 |= ENABLE_TIMER; // Enable timer

PWM DUAL OUTPUT Mode

In PWM DUAL OUTPUT mode, the timer outputs a PWM output signal and also its com-
plement through two GPIO port pins, the timer also generates a second PWM output sig-
nal, timer output complement (TOUT). A programmable deadband is configured (PWMD
field) to delay (0 to 128 system clock cycles) the Low to a High (inactive to active) output
transitions on these two pins. This configuration ensures a time gap between the deasser-
tion of one PWM output to the assertion of its complement.

The PWM period is determined by the following equation:

If TPOL is set to 0, the ratio of the PWM output High time to the total period is deter-
mined by the following equation.
AN031201-0211 Page 48 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
If TPOL is set to 1, the ratio of the PWM output High time to the total period is deter-
mined by the following equation.

The code below indicates how to configure the timer in PWM DUAL OUTPUT mode.

T2CTL0 = (PWM_DUAL_MODE << 4) & 0x80; // Disable timer, PWM Dual Output mode
T2CTL1 = (PWM_DUAL_MODE & 0x07) | PRESCALE;
T2H = (STARTCOUNT >> 8); // Set starting count value = 0001h
T2L = (STARTCOUNT & 0x00FF);
T2RH = (RELOAD >> 8); // Set reload value = 1381h (1msec)
T2RL = (RELOAD & 0x00FF);
T2PWMH = (RELOAD / 2) >> 8; // Set PWM value (50% duty cycle)
T2PWML = (RELOAD / 2) & 0x00FF;
TMR2_Priority_High (); // Enable timer interrupt priority
Enable_Timer2_OutputPin (); // Configure Port C for alternate

// function operation
T0CTL1 |= ENABLE_TIMER; // Enable timer

CAPTURE Mode

When the timer is enabled in CAPTURE mode, it counts continuously and resets to 0000H
from FFFFH. When a capture event occurs, the timer counter value is captured and stored
in the PWM High and Low Byte registers, an interrupt is generated, and the timer contin-
ues counting up to the 16-bit reload value stored in the Timer Reload High and Low Byte
registers. Upon reaching the reload value, the timer generates an interrupt and continues
counting.

In CAPTURE mode, the elapsed time from timer start to the capture event is calculated
using the following equation, in which the start value = 1.

The code below indicates how to configure the timer in CAPTURE mode.

T2CTL1 = CAPTURE_MODE | PRESCALE; // Disable timer, CAPTURE mode
T2H = (STARTCOUNT >> 8); // Set starting count value = 0001h
T2L = (STARTCOUNT & 0x00FF);
T2RH = (0xFFFF >> 8); // Set reload value
T2RL = (0xFFFF & 0x00FF);
T2PWMH = 0x00; // Clear the PWM high & low byte registers
T2PWML = 0x00;
TMR2_Priority_High(); // Enable timer interrupt priority
Enable_Timer2_InputPin (); // Enable timer input pin
T0CTL1 |= ENABLE_TIMER; // Enable timer
AN031201-0211 Page 49 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
CAPTURE RESTART Mode

When the timer is enabled in CAPTURE RESTART mode, it counts continuously until a
capture event occurs or the timer count reaches the 16-bit compare value stored in the
Timer Reload High and Low Byte registers. If the capture event occurs first, the timer
counter value is captured and stored in the PWM High and Low Byte registers, an inter-
rupt is generated, the count value in the Timer High and Low Byte registers is reset to
0001H, and counting resumes. If no capture event occurs upon reaching the reload value,
the timer generates an interrupt, the count value in the Timer High and Low Byte registers
is reset to 0001H, and counting resumes.

The code below indicates how to configure the timer in CAPTURE RESTART mode.

T2CTL1 = (CAPTURE_RESTART_MODE & 0x07) | PRESCALE;
T2CTL0 = (CAPTURE_RESTART_MODE << 4) & 0x80;// Disable timer,

// CAPTURE RESTART mode, prescale = 4
T2H = (STARTCOUNT >> 8); // Set starting count value = 0001h
T2L = (STARTCOUNT & 0x00FF);
T2RH = (0xFFFF >> 8); // Set reload value
T2RL = (0xFFFF & 0x00FF);
TMR2_Priority_High(); // Enable timer interrupt priority
Enable_Timer2_InputPin (); // Enable timer input pin
T2CTL1 |= ENABLE_TIMER; // Enable timer

CAPTURE/COMPARE Mode

CAPTURE/COMPARE mode is identical to CAPTURE RESTART mode except that
counting does not start until the first appropriate external Timer Reload High and Low
Byte input transition occurs. Every subsequent appropriate transition (after the first) of the
Timer Reload High and Low Byte input signal captures the current count value. When the
capture event occurs, an interrupt is generated, the count value in the Timer Reload High
and Low Byte registers is reset to 0001H, and counting resumes. If no capture event
occurs, then upon reaching the compare value, the timer generates an interrupt, the count
value in the Timer High and Low Byte registers is reset to 0001H, and counting resumes.

The code below illustrates how to configure the timer in CAPTURE/COMPARE mode.

T2CTL1 = CAPTURE_COMPARE_MODE | PRESCALE;// Disable timer,
// CAPTURE COMPARE mode, prescale = 4

T2H = (STARTCOUNT >> 8); // Set starting count value = 0001h
T2L = (STARTCOUNT & 0x00FF);
T2RH = (RELOAD >> 8); // Set compare value = 1381h (1msec)
T2RL = (RELOAD & 0x00FF);
TMR2_Priority_High(); // Enable timer interrupt priority
Enable_Timer2_InputPin (); // Enable timer input pin
T0CTL1 |= ENABLE_TIMER; // Enable timer
AN031201-0211 Page 50 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
COMPARE Mode

In COMPARE mode, the timer counts up to the 16-bit compare value stored in the Timer
Reload High and Low Byte input registers. After reaching the compare value, the timer
generates an interrupt and counting continues (i.e., the timer value is not reset to 0001H).
If the timer output alternate function is enabled, the timer output pin changes state (from
Low to High or from High to Low).

If the timer reaches FFFFH, the timer rolls over to 0000H and continues counting.

The code below indicates how to configure the timer in COMPARE mode.

T0CTL1 = COMPARE_MODE | PRESCALE; // Disable timer,
// COMPARE mode, prescale = 4

T0H = (STARTCOUNT >> 8); // Set starting count value = 0001h
T0L = (STARTCOUNT & 0x00FF);
T0RH = (RELOAD >> 8); // Set compare value = 1381h (1msec)
T0RL = (RELOAD & 0x00FF);
T0CTL0 = TICONFIG_RELOAD_COMPARE; // Set Timer to interrupt on

// reload/compare events only
TMR2_Priority_High(); // Enable timer interrupt priority
Enable_Timer2_OutputPin(); // Configure Port C for alternate

// function operation
T0CTL1 |= ENABLE_TIMER; // Enable timer

GATED Mode

In GATED mode, the timer counts only when the timer input signal is in its active state as
determined by the TPOL bit in the Timer Control 1 Register. When the timer input signal
is active, counting begins. A timer interrupt is generated when the timer input signal tran-
sits from active to inactive state or a timer reload occurs. To determine if a timer input sig-
nal deassertion generated the interrupt, read the associated GPIO input value and compare
to the value stored in the TPOL bit.

The timer counts up to the 16-bit reload value stored in the Timer Reload High and Low
Byte input registers. Upon reaching the reload value, the timer generates an interrupt, the
count value in the Timer High and Low Byte input registers is reset to 0001H, and count-
ing continues as long as the timer input signal is active. If the timer output alternate func-
tion is enabled, the timer output pin changes state (from Low to High or from High to
Low) at timer reload.

The code below illustrates how to configure the timer in GATED mode.

T2CTL1 = GATED_MODE | PRESCALE; // Disable timer,
// GATED mode, prescale = 4

T2H = (STARTCOUNT >> 8); // Set starting count value = 0001h
T2L = (STARTCOUNT & 0x00FF);
T2RH = (RELOAD >> 8); // Set reload value = 1381h (1msec)
T2RL = (RELOAD & 0x00FF);
TMR2_Priority_High(); // Enable timer interrupt priority
Enable_Timer2_OutputPin; // Configure Port C for alternate
AN031201-0211 Page 51 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
// function operation
T0CTL1 |= ENABLE_TIMER; // Enable timer

ESPI Operation

On Z16FMC MCUs, the ESPI is a full-duplex, synchronous, character-oriented channel
that supports a four-wire interface (serial clock, transmit and receive data and Slave
select). The ESPI block consists of a shift register, transmit and receive data buffer regis-
ters, a baud rate (clock) generator, control/status registers and a control state machine.
Transmit and receive transfers are synchronous due to a single shift register for both trans-
mit and receive data.

The features of the ESPI block include:

• Full duplex, synchronous, character-oriented communication

• Four-wire interface (SS, SCK, MOSI, MISO)

• Transmit and receive buffer registers to enable high throughput

• Transfer rates up to a maximum of one-fourth the system clock frequency (SLAVE
mode)

• Error detection

• Optional digital filter on receive SDA and SCL lines

• Dedicated programmable baud rate generator

• Data transfer control through polling, interrupt, or DMA
AN031201-0211 Page 52 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
Figure 27. ESPI Block Diagram
AN031201-0211 Page 53 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
Overview of the SPI Protocol
The SPI bus uses four logic lines:

• SCLK – serial clock (output from master)

• MOSI – master output, slave input (output from master)

• MISO – master input, slave output (output from slave)

• SS – slave select (active low, output from master)

The SPI bus can operate with a single master, plus one or more slave devices.

SPI Data Transfer
The master first configures the clock using a frequency less than or equal to the maximum
frequency that the slave device supports. The master then pulls the SS pin Low from the
appropriate slave device. During the SPI clock cycle, a full duplex data transfer occurs
(refer to Figure 28), the following actions occur.

• The master sends a bit on the MOSI line and the slave it reads it on the same line

• The slave sends a bit on the MISO line and the master reads it on the same line

Transmissions can involve any number of clock cycles; the most common are 8-bit and
16-bit word transfers. When there is no more data to transfer, the master stops toggling the
clock and deselects the slave by pulling the SS pin High. The master can select only one
slave at a time. Every slave on the bus that has not been selected must disregard the input
clock and MOSI signals.

In addition to the clock frequency, the master must also configure the clock polarity
(CPOL) and clock phase (CPHA).

If CPOL = 0 (i.e., the clock base value is Low), the following actions occur:

• For CPHA = 0, data is captured on the SCK’s rising edge (low to high transition)

• For CPHA = 1, data is captured on the SCK’s falling edge (high to low transition)

If CPOL = 1 (i.e., the clock base value is High), then the following actions occur:

Figure 28. Sample SPI Configuration
AN031201-0211 Page 54 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
• For CPHA = 0, data is captured on the SCK’s falling edge (high to low transition)

• For CPHA = 1, data is captured on the SCK’s rising edge (low to high transition)

A CPHA value of 0 refers to a sampling on the leading (first) clock edge, while a CPHA of
1 means a sampling on the trailing (second) clock edge, regardless of whether that clock
edge is rising or falling. For all CPOL and CPHA modes, the initial clock value must be
stable before the chip select line goes active.

SPI Hardware Architecture
Figure 30 displays the block diagram for this application note. In this diagram, one
Z16F2811 part acts as the SPI Master while another Z16F2811 part acts as the slave.

Figure 29. Data Transfer Timing Diagram

Table 16. SPI Modes

Mode
SCK

Polarity
SCK

Phase
SCK

Transmit Edge
SCK

Receive Edge
SCK

Idle State

0 0 0 Falling Rising Low

1 0 1 Rising Falling Low

2 1 0 Rising Falling High

3 1 1 Falling Rising High

Figure 30. Design Block Diagram
AN031201-0211 Page 55 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
SPI Software Implementation
This reference design makes use of the ZNEO CPU’s enhanced serial peripheral interface.
There are two sets of firmware presented in this reference design: one for the master and
one for the slave; each is briefly described below. These firmware sets initialize the SPI
peripheral and enable communication via an SPI protocol.

Master Mode. The master mode features the following two APIs:

• A Write API, in which the master writes to a certain address in a cyclic buffer of the
slave

• A Read API, in which the master reads to a certain address in a cyclic buffer of the
slave

Slave Mode. The slave saves the data to an appropriate address whenever a Write com-
mand is sent by the master. It also responds to the master by sending data being pointed to
by the Read command.

Testing SPI Operation
The slave features a buffer array which stores data sent by the master. The master sends
either a Write command/or a Read command to the slave. The slave responds to the master
based on the command structure given by the master.

There are two types of commands:

• A Write command, which carries a command byte of 0xA0

• A Read command, which carries a command byte of 0x50

The slave determines which part of the buffer array is to be accessed by examining the
address byte; the buffer array is 10 bytes long.

The data field provides the data to be written and is read by the slave when a Write com-
mand is sent. When a Read command is sent, the master reads the data sent by the slave.

Equipment Used

The following equipment is used to set up a test of the SPI peripheral:

• Two Z16FMC Series Development Kits

• Connecting wires

• PC with installed ZDS II ZNEO 4.11.1 IDE and a serial port

Figure 31. Master Command Structure
AN031201-0211 Page 56 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
Setup

For the setup, please refer to Figure 28 on page 54 and Appendix A. Schematics on page
60.

Procedure

Observe the following steps to test the SPI functionality of the Z16FMC MCU.

1. Connect the two Z16FMC Series MCU development boards as indicated in Appendix
A. Schematics on page 60.

2. Remove Jumper J1 on both boards.

3. Download the project file for the master and open it in the ZDS II IDE (AN0312-
SC01.zip).

4. Compile and build the project. Download the hex code to one Z16FMC Series Devel-
opment Board.

5. Download the project file for the slave and open it in the ZDS II IDE (AN0312-
SC02.zip).

6. Compile and build the project. Download the hex code to the other Z16FMC Series
Development Board.

7. Create a new Hyperterminal connection with the following properties: 57600 bps, 8
data bits, no parity with 1 stop bit and no flow control.

8. In the Hyperterminal program, navigate via the Properties menu to Settings →
ASCII Setup → Uncheck Echo typed characters locally.

9. Execute the program for the master, a message prompt can be seen on the Hypertermi-
nal.

10. Follow the message prompt.

Results

Data was successfully transmitted between the two Z16FMC Series Development Boards
using the SPI protocol. The waveforms for the Read and Write operations were captured
using a logic analyzer and are displayed in Figures 32 and 33.

Figure 32. Master Write Transaction Waveform
AN031201-0211 Page 57 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
Summary

This Application Note discusses how to use the ADC, UART, I2C, PWM, SPI and Timer
peripherals of the ZNEO CPU, plus provides source code files to enable further examina-
tion and understanding of the Z16FMC Series of Flash Motor Control MCUs.

References

The documents associated with Zilog’s Flash Motor Control MCUs can be found just one
click away on www.zilog.com.

• ZNEO Z16F Series of Microcontrollers Development Kit User Manual (UM0202)

• ZNEO Z16F Series Product Specification (PS0220)

• Z16FMC Motor Control MCU Product Specification (PS0287)

Figure 33. Master Read Transaction Waveform

Figure 34. Hyperterminal Output
AN031201-0211 Page 58 of 68

http://www.zilog.com
http://www.zilog.com/docs/zneo/devtools/UM0202.pdf

http://www.zilog.com/docs/zneo/PS0220.pdf
http://www.zilog.com/docs/ps0287.pdf

Getting Started with ZNEO®-Based MCUs
Application Note
• Z16FMC Series Motor Control Development Kit User Manual (UM0234)

• Zilog Developer Studio II – ZNEO User Manual (UM0171)

• ZNEO CPU Core User Manual (UM0188)

Additional references:

• 2-wire serial EEPROM (AT24C128; www.atmel.com)

• I2C protocol http://en.wikipedia.org/wiki/I%C2%B2C
AN031201-0211 Page 59 of 68

http://www.atmel.com
http://en.wikipedia.org/wiki/I%C2%B2C
http://www.zilog.com/docs/zneo/UM0188.pdf
http://www.zilog.com/docs/devtools/um0171.pdf
http://www.zilog.com/docs/zneo/devtools/UM0234.pdf

Getting Started with ZNEO®-Based MCUs
Application Note
Appendix A. Schematics

This appendix presents the schematic diagrams for the I2C interface.

Figure 35. Setup for I2C Interfacing with AT24C128
AN031201-0211 Page 60 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
Figure 36. Setup for SPI Master-Slave Interface
AN031201-0211 Page 61 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
Appendix B. Flowcharts

ADC Flowchart
This appendix displays the flowcharts of ZNEO Microcontroller ADC Code.

Figure 37. ADC Code Flowchart
AN031201-0211 Page 62 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
I2C Flowcharts
Figures 38 through 40 display the software flow of the I2C main function as well as the
Read and Write APIs.

Figure 38. I2C Main Function

START

INITIALIZE I2C,
CLOCK, UART

WRITE EEPR OM

READ EEPROM

STOP
AN031201-0211 Page 63 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
Figure 39. Master Write Transaction Flowchart

START CHECK IF I2C IS

BUSY

ISSUE A START
CONDITION

SEND DEVICE
ADDRESS (R/W = 0)

SLAVE DEVICE
ACKNOWLEDGED?

SEND MOST
SIGNIFICANT BYTE
OF THE ADDRESS

SLAVE DEVICE
ACKNOWLEDGED?

SEND LEAST
SIGNIFICANT BYTE
OF THE ADDRESS

SLAVE DEVICE
ACKNOWLEDGED?

SEND DATA TO BE
WRITTEN

SLAVE DEVICE
ACKNOWLEDGED?

MORE DATA TO
SEND?

ISSUE A STOP
CONDITION STOP

NO

NO

NO

NO

NOYES

YES

YES

YES

YES
AN031201-0211 Page 64 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
Figure 40. Master Read Transaction Flowchart

START CHECK IF I2C IS

BUSY

ISS UE A START
CONDITION

SEND DEVICE
ADDRESS (R/W = 0)

SLAVE DEV ICE
ACKNOWLEDGED?

SEND M OST
SIGNIFICANT BYT E
OF THE ADDRESS

SLAVE DEV ICE
ACKNOWLEDGED?

SEND LEA ST
SIGNIFICANT BYT E
OF THE ADDRESS

SLAVE DEV ICE
ACKNOWLEDGED?

READ DATA FROM
THE EEPROM

LAST DATA TO BE
READ?

ISSUE A STOP
CONDITION

STOP

NO

NO

NO

NO

YE S
Y ES

Y ES

Y ES

RE-ISSUE A
ST ART

CONDITION

SEND AN
ACKNOWLEDGE TO

T HE EEPROM

SEND A NOT
ACKNOWLEDGE TO

T HE EEPROM
AN031201-0211 Page 65 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
SPI Flowcharts
Figures 41 and 42 display the software flow of the SPI main function in Master and Slave
modes, respectively.

Figure 41. SPI Main Function (Master Mode)
AN031201-0211 Page 66 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
Figure 42. SPI Main Function (Slave Mode)
AN031201-0211 Page 67 of 68

Getting Started with ZNEO®-Based MCUs
Application Note
Customer Support

To share comments, get your technical questions answered, or report issues you may be
experiencing with our products, please visit Zilog’s Technical Support page at
http://support.zilog.com.

To learn more about this product, find additional documentation, or to discover other fac-
ets about Zilog product offerings, please visit the Zilog Knowledge Base at http://
zilog.com/kb or consider participating in the Zilog Forum at http://zilog.com/forum.

This publication is subject to replacement by a later edition. To determine whether a later
edition exists, please visit the Zilog website at http://www.zilog.com.

DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS.

LIFE SUPPORT POLICY

ZILOG’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE
SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF
THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b)
support or sustain life and whose failure to perform when properly used in accordance with instructions for
use provided in the labeling can be reasonably expected to result in a significant injury to the user. A
critical component is any component in a life support device or system whose failure to perform can be
reasonably expected to cause the failure of the life support device or system or to affect its safety or
effectiveness.

Document Disclaimer

©2010 Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications,
or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES
NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE
INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO
DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED
IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED
HEREIN OR OTHERWISE. The information contained within this document has been verified according
to the general principles of electrical and mechanical engineering.

Z8, Z8 Encore!, Z8 Encore! XP and ZMOTION are trademarks or registered trademarks of Zilog, Inc. All
other product or service names are the property of their respective owners.

Warning:
AN031201-0211 Page 68 of 68

http://zilog.com/kb
http://zilog.com/kb
http://zilog.com/forum
http://support.zilog.com/

	Getting Started with ZNEO-Based MCUs Application Note
	Abstract
	Table of Contents
	Features
	Discussion
	ADC Operation
	ADC Hardware Architecture
	ADC Software Implementation
	ADC Initialization
	Testing ADC Operation

	UART Operation
	LIN-UART Register Description
	UART Software Implementation

	I2C Operation
	I2C Hardware Architecture
	I2C Software Implementation
	Testing I2C Operation

	Multi-Channel PWM Module Operation
	PWM Functions
	PWM Software Implementation

	Timer Operation
	Timer Features
	Timer Software Implementation
	Timer Modes

	ESPI Operation
	Overview of the SPI Protocol
	SPI Data Transfer
	SPI Hardware Architecture
	SPI Software Implementation
	Testing SPI Operation

	Summary
	References
	Appendix A. Schematics
	Appendix B. Flowcharts
	ADC Flowchart
	I2C Flowcharts
	SPI Flowcharts

	Customer Support

